Helping manufacturing can help the rest of the economy

Susan Helper
AT&T Professor of Economics
Weatherhead School of Management,
Case Western Reserve University
For US Senate Democratic Policy Committee
April 2008
Manufacturing can help meet national goals

• Good-paying jobs with career ladder
 - 14 million jobs, with weekly wage 20% above economy average

• Energy sustainability
 » Creating renewable capability to meet 25% of US electricity demand would employ 925,000
Energy Sustainability is a critical need

• Combating global warming requires capability for innovations large and small
 – Reduce cost of renewable energy
 – Increase efficiency in producing, using cars, appliances, etc.

• These capabilities are lacking
 – 90% of manufacturers report moderate-to-severe shortage of skilled production employees
 – 65% report moderate-to-severe shortage of scientists and engineers
 – Tooling industry lost 1/3 of employees 2000-2005
“High-road” mfg is necessary to achieve these national goals

• In “high-road” production, well-paid workers make cost-effective, sustainable products for consumers, profits for owners

 » How?
 » High road techniques harness everyone’s knowledge—not just top executives’ -- to achieve innovation, quality, and variety
 » Just one suggestion by workers at Mittal Steel in Cleveland saves $1 million per year
 » Colonial Machine in Kent OH makes tools just in time, with innovative reusable tool bases and computerized equipment equ
Many US Plants are Cost Competitive

Source: Michigan Manufacturing Technology Center. FY2006 data. Does not include hidden costs of off-shoring.
High wages don’t have to mean high costs

- Direct labor is usually only 5-15% of cost
- Offset high wages with better performance
 - Individual high skills
 - Collaborative supply chain, clusters of nearby firms provide fertile ground for new ideas
- Avoid hidden costs of off-shoring
 - Management loses focus on innovation at home
 - Increased risk from long supply chain
 - More difficult communication among design, engineering, and production means quality problems may fester
 - Eventually, design as well as production may move
Firms could close the gap with “high-road” production

• US manufacturers can compete with China.
 – But by *increasing* skill – not by imitating China

• But, many firms don’t use, due to market failures
 – Spillovers to workers and suppliers
 • Firms don’t capture all the gains from high-road production, so they invest too little in it
 – Complementarities
 – Colonial tool needed to invest in information technology, training, process redesign, and marketing
 – No one of these investments would pay off without the other
Public policies can help

- Example: Mfg Extension Partnership
 - Teaches firms high-road skills
 - Problem-solving for all workers
 - New product development
 - Collaboration with suppliers
 - We should triple this program, to million per year
 - Would cost < 18 hours of current Iraq war spending
 - And pay for itself with increased tax revenue
 » Cheap to retain capability, expensive to create it
Complementary policies

• Pave the high road
 – reduce costs of socially-beneficial actions thru
 • Education
 • R&D subsidies
 • Universal health care

– See also Economic Policy Institute Agenda for Shared Prosperity: www.sharedprosperity.org
Complementary policies (2)

• **Block the low road**
 – stop undercutting socially-responsible
 • Protect labor and environmental rights
 – Internationally
 » Treaties should promote competition based on innovation, not exploitation of workers, environment
 – Domestically
 » Strengthen safety, health, and labor regulation
 • Subsidize only firms that commit to high wage, high productivity, sustainable strategies
 – Patriot Corporations Bill
Conclusion: Why Promote High Road Production?

• Helps other stakeholders in the economy
 – Helps meet national goals such as energy sustainability
 – Doesn’t throw money at firms without quid pro quo

• Makes workers integral to production—not disposable
 • Education, R&D are important—but by themselves do not provide good jobs for most Americans

• High road principles apply to all sectors
 – Not just manufacturing
backup
Market design

• Role of externalities
 – Pie-expanding vs. Tapping into workers’ local knowledge may increase their

• Role of complementarities
 – Sector-specific policies needed
 • Need to operate on both supply and demand side
 – Training
 – Equipment design
 – Performance capabilities and expectations of shared supply chains (“industrial commons”)
 • appropriate interventions (in any sector—not just mfg) require industry-specific knowledge and with the participation of firms and other institutions that support the industry.
Other views

• Is manufacturing really in trouble?
 – Output is rising

• Why is mfg employment declining?
 – Reich, CBO views

• Is it a problem that manufacturing employment is declining?
 – Agriculture analogy

• Is manufacturing special in some way?

• Can government improve the situation?
 – Do market failures outweigh gov’t failures?
Dis-integration of Production and the Role of Institutions in the US Auto Industry

Susan Helper
Case Western Reserve University
March 2010

susan.helper@case.edu
Agenda

• Dis-integration of production in the US Automotive Industry has occurred
 • Key contributor to crisis at GM and Chrysler

• Can the US create institutions to govern shared supply chains?
Suppliers and the US auto crisis

• Cause of US auto crisis often held to be union labor costs
 – But these costs, including “legacy costs” of health care and pensions, made up < 10% of total costs
Detroit 3 Transaction Prices for Like-Like Vehicles Lag Behind Japanese OEMs by $2,500-$3,500

<table>
<thead>
<tr>
<th>Category</th>
<th>GM</th>
<th>Ford</th>
<th>Chrysler</th>
<th>Toyota</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compact Car</td>
<td>$15,025</td>
<td>$15,031</td>
<td>$16,721</td>
<td>$18,418</td>
</tr>
<tr>
<td>Compact SUV</td>
<td>$21,688</td>
<td>$22,028</td>
<td>$21,833</td>
<td>-</td>
</tr>
<tr>
<td>Compact Truck</td>
<td>$19,516</td>
<td>$17,338</td>
<td>$21,960</td>
<td>$23,147</td>
</tr>
<tr>
<td>Large Car</td>
<td>$21,518</td>
<td>$23,047</td>
<td>$25,342</td>
<td>$31,753</td>
</tr>
<tr>
<td>Large SUV</td>
<td>$37,087</td>
<td>$35,425</td>
<td>$30,084</td>
<td>$44,971</td>
</tr>
<tr>
<td>Large Truck</td>
<td>$28,442</td>
<td>$28,555</td>
<td>$30,137</td>
<td>$29,222</td>
</tr>
<tr>
<td>Luxury Car</td>
<td>$37,650</td>
<td>$32,346</td>
<td>-</td>
<td>$41,728</td>
</tr>
<tr>
<td>Luxury Sport Car</td>
<td>$63,879</td>
<td>$64,394</td>
<td>-</td>
<td>$45,974</td>
</tr>
<tr>
<td>Luxury SUV</td>
<td>$45,525</td>
<td>$45,820</td>
<td>-</td>
<td>$46,032</td>
</tr>
<tr>
<td>Midsize Car</td>
<td>$19,127</td>
<td>$18,707</td>
<td>$20,754</td>
<td>$23,169</td>
</tr>
<tr>
<td>Midsize SUV</td>
<td>$23,707</td>
<td>$27,394</td>
<td>$25,790</td>
<td>$29,285</td>
</tr>
<tr>
<td>Minivan</td>
<td>$23,940</td>
<td>-</td>
<td>$25,070</td>
<td>$26,930</td>
</tr>
<tr>
<td>Van</td>
<td>$23,242</td>
<td>$22,639</td>
<td>$38,259</td>
<td>-</td>
</tr>
</tbody>
</table>

susan.helper@case.edu
Low price didn’t stop market share loss

U.S. Light Vehicle Market Share: GM

Source: S&P from Ward’s; 2007 is January 2007
The “Detroit Three” have a *price* problem more than a cost problem

- Suppliers play a key role in this problem—and in its solution
 - Capability problem
 - Massive outsourcing of the last 20 years created a shared supply chain, upon which automakers depend for design, production—
 - But each automaker wants to free-ride on others’ investment
 - Result: Underinvestment in design, quality, delivery capabilities
 - many supplier bankruptcies (even before general crisis)
 - Collaboration problem
 - US automakers incentivize purchasing agents to minimize piece prices
 - but this often results in increased system costs, reduced performance (eg, poor ride quality)
 » due to poor management of interactions across parts, frequent engineering changes
Industries with small suppliers can be productive

• Examples:
 – Germany: Baden-Wurttemburg
 – Italy: Emilia-Romagna
 – US agriculture

• These industries all have structures to overcome free-rider problems
Case study: automotive dies
Die-making

• Forms that bend metal into the shape of parts such as doors, roofs
• Lots of interaction among car design, engineering, auto manufacturing, die design
 – Flanges, attachment points, springback
US die-making: outsourcing

• Outsourced to small shops, who underbid each other on initial price
 – Make money on engineering changes, when OEM bargaining power is low→
 • Supplier may not want to find problems early
 – Shop cannot predict how many bids it will win→
 • Bid on diverse projects—don’t develop expertise on any one type of die
 • Will be late in boom times
 – Die-makers shared across OEMs→ no customer wants to pay for upgrading
US die-making: offshoring

• Chinese subsidies for die-making in last 10yrs
 – entrepreneurs get free factory and equipment if they meet employment goals
 – Piece prices 15-30% lower than US
 – Have developed standard ways of working to overcome distance
 • Webcams, detailed time sheets to show progress

• US die-making lost 1/3 of employees, 2000-5
 • Skilled as well as unskilled mfg being lost

susan.helper@case.edu
Die-making: Japanese approach

• Honda, Toyota in US:
 – Establish target cost based on deviations from previous design
 – Ask shop that made previous design if they can meet the target price
 • Discuss changes to design
 – System cost is less, quality is higher
 • No dies imported from low-wage countries

susan.helper@case.edu
Collaborative Tooling Example
Door Inners – 30% Savings

Source: Forthcoming CAR research
Implications of supply chain design for training

• Old US way
 – Each die is approached as a one-off project
 • Requires craft skill
 • Little repeatability
 • Expensive; workers retiring

• New US way
 – Rely on equipment, plant subsidies in China
 • Enables low capacity, labor utilization, narrowly-trained workers
 • Chinese have systematic ways of overcoming distance
 – Webcams, product life-cycle management software

• Japanese way
 – Suppliers become specialized, allows repeatability
 • Rewards skill at continuous improvement, systematization
Changes needed

• Adopt collaborative purchasing practices
 – Measure system cost
 – Adopt ‘value analysis’
 • Rigorous joint analysis of each process step improves systemic properties

• Remedy market failures of shared supply chains
 • Externalities
 – Recruit and train workers
 • Complementarities
 – To engage in continuous improvement and/or rapidly introduce new products, firms need to make near-simultaneous investments in marketing, information technology, training, and equipment
 – Hard for small firms to plan, implement, and finance this without help
 • Lean production

susan.helper@case.edu
How could industry councils help?

• Elicit the detailed information necessary to design good policies (overcome bounded rationality)
 – identify blockages that retard innovation.
 • Lack of collaboration
 – identify training needs
 • Codification of processes, handling lightweight ("green") materials
 – manage the design of training for field agents of the Manufacturing Extension Program (MEP) who assist firms in their sector.

• Bring together different interests (overcome opportunism)
 – create social networks that allow firms to learn from each other.
 – make coordinated investments, both subsidized and not.
 – compete for competitive grant programs
 • Government sets terms to incentivize competing on innovation, not low wages

• Thus, avoiding government failure (Rodrik), creating "learning by monitoring" (Sabel)
PART

- Program for Automotive Renaissance in Tooling
- Tried to agree on specialization across firms, develop lean capabilities
- Grant funding ran out
- No interest, pressure from OEMs

susan.helper@case.edu
Conclusions

• Massive outsourcing in US manufacturing has created shared supply chains.
• These supply chains need explicit governance if we are to overcome free-rider problems that block investments in supplier upgrading.
 — If not, US mfg will remain stuck in middle between high skills of Europe, low wages of China, Mexico.
• Industry councils could play an important role in this new governance structure.
 — But other institutions also needed (your help, please)

susan.helper@case.edu
Back-up slides
An industry council for die-making?

- US mfg stuck in middle between high skills of Europe, low wages of China, Mexico
- Rationale: Shared supply chains can be highly productive, *if* they are governed collectively
- Industry council:
 - Industry participants agree on training, standards for investments in computer-aided design, roadmap for tooling new, green powertrains, etc.
 - Government provides grants on competitive basis (to overcome free-rider problems), but does not “pick winners”
Criteria for good supply-chain governance

• Ability to choose investments well
 – Identify blockages that retard innovation
Possible experiment with Detroit-3 automaker

• Automaker would like to try collaboration
 – Higher payoff to proximity, but is it too late?
 – Remaining US shops divide labor (door inner, door outer, roof panel, etc) so can specialize
 – Automaker sources similar die from on-shore and off-shore, and examines system cost
Trust, but verify

- A cautionary tale from Chrysler in the 1990s
 - Chrysler trusted suppliers
 - Sole source across all of Chrysler
 - Little ability to verify that they got best performance
 - Could not benchmark suppliers of similar part for different car models
 - Could not check, improve designs because Chrysler had laid off engineers
 - Result
 - Chrysler was able to speed up product development, but could not obtain competitive supply prices
Why not let Honda and Toyota restructure US auto industry?

• They won’t invest as much in US suppliers as would be efficient
 – Although they spend more on supplier development than do the Detroit 3, Honda and Toyota do worry about others free-riding

• The most advanced processes remain in Japan
 – R&D, advanced product development
 – Close to headquarters and most-skilled supplier production facilities